If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9v^2+43v-10=0
a = 9; b = 43; c = -10;
Δ = b2-4ac
Δ = 432-4·9·(-10)
Δ = 2209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2209}=47$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-47}{2*9}=\frac{-90}{18} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+47}{2*9}=\frac{4}{18} =2/9 $
| 4x+(4x-4+1)=3557 | | 3.6/3=b/25 | | (9+h)*10=210 | | -15+3c=-42c+35 | | -6(v+4)+3v+6=8v+10 | | 4x–4=9x+1 | | n/19=-12 | | 6x-8x+5=-2(2+x)+7 | | k+17=18 | | 7/8*8/7=x | | −6(v+4)+3v+6=8v+10 | | -15p-4(4-6p)=4(p-6)-27 | | -30=-5+8z-24 | | 5/8x+13=8 | | 0.2x+0.3=11 | | 32/(y+3)=8 | | 2/3x+5=1/2x-1 | | 9a+15=-10a-7 | | 6c-4=3c+11 | | 3(6-f)-4=3f-43(6−f)−4=3f−4 | | -27=-18-m | | G(8)=x-7 | | 3(x-5)=296 | | 3=45q | | 3y+29=3y+19 | | (1/3)x–4=(3/4)x+1 | | 4y-6=180 | | x+4(+6)=-1 | | -5q+19=3(q-12) | | 10b+7(-8b-4)=6(-6-9b) | | -9y+7y=-29 | | -10p+8=-192 |